lunes, 16 de noviembre de 2015

Topología

La topología (del griego τόπος, 'lugar', y λόγος, 'estudio') es la rama de lasmatemáticas dedicada al estudio de aquellas propiedades de los cuerpos geométricos que permanecen inalteradas por transformaciones continuas.1 Es una disciplina que estudia las propiedades de los espacios topológicos y las funciones continuas. La topología se interesa por conceptos como proximidadnúmero de agujeros, el tipo deconsistencia (o textura) que presenta un objeto, comparar objetos y clasificar múltiples atributos donde destacan conectividadcompacidadmetricidad o metrizabilidad, entre otros.
Los matemáticos usan la palabra topología con dos sentidos: informalmente es el sentido arriba especificado, y de manera formal es la referencia a una cierta familia desubconjuntos de un conjunto dado, familia que cumple unas reglas sobre la unión y la intersección -este segundo sentido puede verse desarrollado en el artículo espacio topológico.

Recuperado de:https://es.wikipedia.org/wiki/Topolog%C3%ADa


Teoría de Conjuntos

La teoría de conjuntos es una rama de las matemáticas que estudia las propiedades y relaciones de los conjuntos: colecciones abstractas de objetos, consideradas como objetos en sí mismas. Los conjuntos y sus operaciones más elementales son una herramienta básica en la formulación de cualquier teoría matemática.
Sin embargo, la teoría de los conjuntos es lo suficientemente rica como para construir el resto de objetos y estructuras de interés en matemáticas: númerosfuncionesfiguras geométricas,...; y junto con la lógica permite estudiar los fundamentos de aquella. En la actualidad se acepta que el conjunto de axiomas de la teoría de Zermelo-Fraenkel es suficiente para desarrollar toda la matemática.
Además, la propia teoría de conjuntos es objeto de estudio per se, no sólo como herramienta auxiliar. En esta disciplina es habitual que se presenten casos de propiedades indemostrables ocontradictorias, como la hipótesis del continuo o la existencia de uncardinal inaccesible. Por esta razón, sus razonamientos y técnicas se apoyan en gran medida en la lógica.
El desarrollo histórico de la teoría de conjuntos se atribuye a Georg Cantor, que comenzó a investigar cuestiones conjuntistas «puras» del infinito en la segunda mitad del siglo XIX, precedido por algunas ideas de Bernhard Bolzano e influenciado por Richard Dedekind. El descubrimiento de las paradojas de la teoría cantoriana, de conjuntos, formalizada por Gottlob Frege, propició los trabajos de Bertrand RussellErnst ZermeloAbraham Fraenkel y otros a principios del siglo XX.

Recuperado de:https://es.wikipedia.org/wiki/Teor%C3%ADa_de_conjuntos





Fundamentos de la Geometría


Geometría Proyectiva

Se llama geometría proyectiva a la rama de la matemática que estudia las propiedades de incidencia de las figuras geométricas, pero abstrayéndose totalmente del concepto de medida. A menudo se usa esta palabra también para hablar de la teoría de la proyección llamada geometría descriptiva.


La Geometría Proyectiva tiene sus orígenes en la pintura del Renacimiento. Luego, en el siglo XVII se recuperarán ideas de los matemáticos griegos (las secciones cónicas, por ejemplo), pero son sin duda los pintores renacentistas los que fundamentan  esta rama de las Matemáticas al conseguir plasmar en lienzos planos los objetos y las figuras tridimensionales tal como son, a diferencia de sus antecesores de la Edad Media. Por eso no es extraño que en esta exposición aparezcan nombres  como Leonardo da Vinci, Rafael Sanzio o Alberto Durero.
En el Renacimiento se investiga la visión que nuestro ojo tiene de una figura cuando la vemos en distintas pantallas colocadas entre ella y nosotros. Así nacen la  perspectiva  y el estudio de las  proyecciones  y las  secciones. Son significativas las preguntas de Leone Battista Alberti en 1435: ¿Qué relación hay entre dos secciones de la misma figura?, ¿cuáles son las propiedades comunes a dos secciones cualesquiera?

 la  Geometría Proyectiva en tres fases:
1. Renacimiento: Arte y Geometría.2. Siglo XVII: Recuperación de los conocimientos griegos y su aplicación a la ciencia y a la técnica.
3. Siglo XIX: Resurgimiento de la Geometría Pura. 

Recuperado de: http://www.mat.ucm.es/~jesusr/expogp/expogp.html

Geometría No Euclidiana y Geometría Euclidiana


Geometría Diferencial

En matemáticas, la geometría diferencial es el estudio de la geometría usando las herramientas del análisis matemático y del álgebra multilineal. Los objetos de estudio de este campo son las variedades diferenciables (al igual que en la topología diferencial) así como nociones de geometría de Riemann, por ejemplo las de conexión y curvatura (que no se estudian en la topología diferencial).
Las aplicaciones modernas de la geometría diferencial están muy relacionadas con la física, especialmente en el estudio de la Teoría de la Relatividad.
Este es un buen momento para retomar la idea de la geometría diferencial (término usado así por primera vez por Luigi Bianchi, 1856 - 1928, en 1894), pues se trata de un marco teórico más general en el cual se integran las geometrías no euclidianas y más que eso: todas las geometrías. La geometría ya no trata de puntos o rectas del espacio, sino de lo que se llama variedades. El punto de partida puede decirse que era el trabajo realizado por Gauss en la construcción de mapas y la llamada geodesia, que apoyaría un nuevo enfoque sobre la naturaleza del espacio. Es decir:
"El problema de construir mapas planos de la superficie de la tierra fue uno de los que dio origen a la geometría diferencial, que se puede describir a grandes rasgos como la investigación de las propiedades de curvas y superficies en el entorno de un punto.'' [Bell, E.T.: Historia de las matemáticas, p. 365]
La geometría diferencial trata de las propiedades de las curvas y superficies que varían de un punto a otro, y son sujetas a variaciones (de punto en punto) donde tiene sentido la utilización de las técnicas del Cálculo. Gauss, en su Disquisitiones Generales circa Superficies Curvas(Investigaciones generales sobre superficies curvas) ofreció la nueva idea que usaría Riemann: una superficie se podía ver como un espacio en sí mismo.
Puede resultar interesante hacer aquí una digresión casi filosófica sobre la naturaleza de la geometría. Para Riemann, al igual que para Gauss, la geometría debía asociarse con la mecánica; por eso, buscó demostrar que los axiomas específicos de Euclides eran empíricos y no autoevidentes y necesarios en sí mismos sin tomar en cuenta la acción de la experiencia. Su estrategia fue buscar qué era lo realmente a priori en la geometría del espacio y estudiar sus consecuencias. Las otras propiedades del espacio no eran a priori. Con ello podría concluir que serían de naturaleza empírica. Es decir, buscar lo realmente necesario y autoevidente y, luego, hacer ver que lo que quedaba fuera tenía que ser empírico.



Recuperado de: 
http://www.centroedumatematica.com/aruiz/libros/Historia%20y%20Filosofia/Parte6/Cap21/Parte03_21.htm:  y  https://es.wikipedia.org/wiki/Geometr%C3%ADa_diferencial

Probabilidad y Estadística